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Motivation: Challenges of big science and computing



CHALLENGES OF BIG SCIENCE AND COMPUTING 4

CMS as an example: Detectors becoming increasingly complex

CMS DETECTOR STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter :15.0m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7m Microstrips (80x180 ym) ~200m? ~9.6M channels
Magnetic field :3.8T
SUPERCONDUCTING SOLENOID
— . Niobium titanium coil carrying ~18,000A

—_—

o High-resolution /7 s o e

detector

e Order of 100

Million

channels

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers

/ z . e,
’ / / \s Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers
‘

PRESHOWER
Silicon strips ~16m?> ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels



DETECTORS GETTING MORE COMPLEX!

CMS upgrade to get ready for HL-LHC data-taking: higher

granularity, timing information etc.
Example: CMS High Granularity Calorimeter

Total Silicon:

= 600 m?

Total scintillator

= 500 m?

Diameter (m)
Length (m)
B-Field (T)

EM Cal channels

Had Cal channels
P.Merkel

15 25
287 |46
3.8 2/4
(80,000 | ~110,000 | 4.3M
~7000 |~10,000 |1.8M
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SOPHISTICATED ALGORITHMS

CMS as an example: Need sophisticated algorithms to fully exploit
the information taken by more complex detectors

What flavor is that?



CRITICAL FOR DISCOVERIES

CMS as an example: plenty of physics cases
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BOOM IN USING DEEP NEURAL NETWORKS

Deep neural network based algorithms perform the best
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EVENT COMPLEXITY WILL GROW

Networks can grow bigger, number of networks will increase
Network inferencing taking significant fraction of the final event processing time in CMS

®
DeepAKS

High top pt

Inceptlon-v4
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GROWING DATASET

Luminosity [cm™s1]
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ALL FACTORS:THE COMPUTING CHALLENGE

Current: ~5 minutes per HL-LHC event

| CMS Experiment at the LHC, CERN

| Data recorded: 201 6-Sep-08 08:30:28.497920 GMT |
SR
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MOORE’S LAW AND DENNARD SCALING 12

7 :
10 . Transistors
: (thousands)
6 :
10
5
10 |
:  Single-thread
4 . Performance
10 . (SpeciINT)
3 Frequency
10 ' (MHz)
2 ; Typical Power
10 T (Watts)
1 Number of
10 ~ Cores
0
10

1975 1980 1985 1990 1995 2000 2005 2010 2615

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Single threaded performance not improving
Circa ~2005: “The Era of Multicore”

Moore’s Law continues
...but Dennard Scaling fails




MOORE’S LAW AND DENNARD SCALING 13

10

7. Transistors

L i Moore’s Law cont_inues_
10° ‘ ...but Dennard Scaling fails
10° |
©  Single-thread CONTROL Aly A
4 . Performance J
10 7 (SpecINT) Aa (Al ]
1n° ;. Frequency e |

We are not the only one facing the computing challenges
faced with Al boom and data volume explosion

Single threaded performance not improving
Circa ~2005: “The Era of Multicore”

— Today: Transition to the “Era of Specialization”? (.. pougBurger)



CMS PARTY@2016 14
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Remember that Facebook ask you (at least used to) to tag
people when you upload a photo?



CMS PARTY@2016 15

Runs image detection every time some one uploads a photo:
Neutral network inference



CMS PARTY@2016 16

300 million photos uploaded/day as of 2018.Nov



PLATFORM PROS & CONS:

More
Flexible

Homogeneous

Specialized

More
Efficient

CPUs

Manycore
CPUs

GPUs

FPGAs

Structured

ASICS

Custom
ASICs

Perf/W
1X

3X

5-30X

5-30X

20-100X

> 100X

Today's standard, most programmable,
good for services changing rapidly

Many simple cores (10s to 100s per chip), useful if
software can be fine-grain parallel, difficult to maintain.

Good for data parallelism by merged threads (SIMD),
High memory bandwidth, power hungry

Most radical fully programmable option. Good for
streaming/irregular parallelism. Power efficient but
currently need to program in H/W languages.

Lower-NRE ASICs with lower performance/efficiency.
Includes domain-specific (programmable) accelerators.

Highest efficiency. Highest NRE costs. Requires high
volume. Good for functions in very widespread use that
are stable for many years.

Conventional
programming

Alternative
programming

Can't change
functionality

17

C/C++

Verilog CUDA

Verilog



PLATFORM PROS & CONS FOR INDUSTRY:

More
Flexible

Homogeneous

Specialized

More
Efficient

CPUs

Manycore
CPUs

GPUs

FPGAs

Structured

ASICS

Custom
ASICs

Perf/W
1X

3X

5-30X

5-30X

20-100X

> 100X

Power bill

—

Today's standard, most programmable,
good for services changing rapidly

Many simple cores (10s to 100s per chip), useful if
software can be fine-grain parallel, difficult to maintain.

Good for data parallelism by merged threads (SIMD),
High memory bandwidth, power hungry

Most radical fully programmable option. Good for
streaming/irregular parallelism. Power efficient but
currently need to program in H/W languages.

Lower-NRE ASICs with lower performance/efficiency.
Includes domain-specific (programmable) accelerators.

Highest efficiency. Highest NRE costs. Requires high
volume. Good for functions in very widespread use that
are stable for many years.
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Conventional
programming

Alternative
programming

Can't change
functionality

.

Software/Electric

engineer
Salaries

Q

C/C++

Verilog CUDA

Verilog
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#TRENDING IN INDUSTRY: CO-PROCESSORS 19

ft Catapult/Brainwave

Specialized co-processor hardware
for machine learning inference

ASIC?

A11 Bionic neural engine

Delivering FPGA Partner Solutions on AWS

via AWS Marketplace
Customers

ol
AWS Marketplace S T_ffll?j,

2 “4,,

Amazon
Machine ' Amazon FPGA Image
Image (AMI) = (AFI)

AFlis secured, encrypted.

dynamically loaded into the

FPGA - can't be copied or
downloaded

Tensor Processing Unit

INTEL" FPGA ACCELERATION HUB

The Intel® Xeon® Acceleration Stack for FPGAs is a robust framework
enabling data center applications to leverage an FPGA's potential to increase



POSSIBLE SOLUTIONS FOR US 20

Computationally intensive: iterative algorithms such as track reconstruction

K Option 1 N K Option 2 x

re-write physics algorithms for new re-cast physics problem as a
hardware machine learning problem
Language: OpenCL, OpenMP, TBB, Language: C++, Python
HLS, ...? (TensorFlow, PyTorch,...)

K Hardware: FPGA, GPU J u-lardware: FPGA, GPU, ASICJ

Example: tracking@HL-LHC:
Option 1: Parallelized and Vectorized Tracking Using Kalman Filters

Option 2: Recent work on tracking using Graph Networks



POSSIBLE SOLUTIONS FOR US

Option 1

4 R

re-write physics algorithms for new
hardware

Language: OpenCL, OpenMP, TBB,
HLS, ...?

K Hardware: FPGA, GPU J

Option 2

é R

re-cast physics problem as a
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,...)

Qardware: FPGA, GPU, ASI(J

Advantage of option 2: recasting problem as machine learning
problems (computing wise)

¢ Algorithms can universally be expressed as simple matrix

multiplications computations
¢ |ntrinsically parallelizable

¢ Follow industry trends in developing co-processors optimized for ML
and speed the up the inference(sub-event level reconstruction such as

tracking)



Proof of concept: Particle physics computing with Brainwave

|

W1ll explain this later with
pretty pictures
Picked this because of its
mature eco system

22



EVENT PROCESSING @ CMS EXPERIMENT -

100 kHz

1us 1s
LHC L1 Trigger LHC LHC/DUNE
(pipelined) High Level Trigger Offline processing
FPGAs/ASICs - high bandwidth Traditionally CPU, growing
low latency specialized exploration into heterogeneous
compute hardware computing...

Brainwave!



EVENT PROCESSING @ CMS EXPERIMENT 2

1 kHz

100 kHz 1 MB/evt

6;
‘ 4 40 MHz

oe! < ‘
\‘(\9 f"e/ S g\\\(\e

LHC L1 Trigger LHC LHC/DUNE
(pipelined) High Level Trigger Offline processing

FPGAs/ASICs - high bandwidth low

Tradjtionally CPU, growing exploration
latency specialized compute hardware

iffto heterogeneous computing...

Bram\wave '

| Two parallel talks this afternoon for L1 /HLT appllcatlons

| “DNN based algorithm for CMS Level-1 muon reconstruction” by Jia Low.

y‘ “"Deep Machine Learning on FPGAs for L1 trigger and Data Acquisition” by Dylan
1 Rankin
|




CO-PROCESSORS WITH WEB SERVICE: BRAINWAVE 25

Even if co-processors are 100x faster, is it feasible to have every T1,T2,T3
computing farm buy specialized hardware?

No, but...
Interesting possibility for the HLT farm...

2-socket server blade

TOR TOR Programmable HW Plane (FPGAs)
ay /[ S A ///// f s
l’ / /Fla dw ; _ g './ Z 4

4=
2
jc
8
g

Switch

Programmable SW Plane (CPUs)

Offline solution: co-processors as a service



BUILDING BLOCKS: CATAPULT V2 26

Hardware as a Service
Network Acceleration
Compute Acceleration

.

40G Ethernet

PCle Gen 3

For more on MS catapult: see talk by A. Putham
https://www.dropbox.com/s/rvd06vp5o0gguqxe/Catapult_2018_Fermilab_Public.pdf



PROOF OF CONCEPT: SONIC

Services for Optimized Network Inference on Co-processors

(work in progress)

FPGA-accelerated machine learning inference as a solution for(7~9l/
particle physics computing challenges

Javier Duarte, Burt Holzman, Ben Kreis, Mia Liu, Kevin Pedro, N.T., Aris Tsaris (FNAL)
Phil Harris, Dylan Rankin (MIT)

+ Doug Burger, Eric Chung, Andrew Putnam (MS research), Ted Way,MS, David Lee (MS Azure)

Question:
How do we integrate heterogeneous computing resources into the
physics event data processing model?



PARTICLE PHYSICS COMPUTING MODEL 28

Our “unit” of analysis is at the event level, with complex interdependencies
Necessitates small “batch of a few” inferences

Event Processing Job

Configuration | —> Parameter
Sets

MODULE 1 ML INFER 1

MODULE 2 MODULE 6
Input Source s | — Output 1
(data or simulation) —_— Output 5

MODULE 3
. ... .1threads

UODULE4 —>| MoDULE5 |—>| ML INFER 2
Database |—> | Event Setup /




ACCESSING HETEROGENEOUS RESOURCES

Implemented New CMSSW feature called External Work:

o Asynchronous task-based processing

External & " FPGA, “
processing o/ GPU, etc. Veg
N hesy %
& NGy
CMSSW V4 TS
module . acqurel) _ produce() |

o Non-blocking: schedule other tasks while waiting for external processing
Can be used with GPUs, FPGAs, cloud, ...

>Now demonstrated to work with Microsoft Brainwave!

More details on external work module: Kevin Pedro’s talk at CHEP

9


https://indico.cern.ch/event/587955/contributions/2937652/attachments/1679306/2697284/CMS_simulation_performance_CHEP2018.pdf

CLOUD vs EDGE 20

uE NN
% Yo,

Datacenter (CPU farm)

Heterogeneous

Experimental Cloud Resource

Software i
~ //\

Network input

_ . Predictionkj

““--....

* Cloud service has latency

* *
<
& Heterogeneous *,

jesnst OgeTResource e * Run CMSSW on Azure cloud machine
e, — simulate local installation of FPGAs
| Y i % (“on-prem” or “edge”)
Experimental ‘;} : FPGA :
L ; .................... - = - - * Provides test of “HLT-like” performance

L 4
..IIIIIlIIIIIIIIIIIIIIIIIIIIIII“



TESTING SONIC 31

104

10°

Logarithmic x-axis — remote | | | " [= remote
_ —__ onprem — onprem
103 107 [ . .
_ —I\L “ Al Linear x-axis
102 Quantization
1% | effect?
10734 —l‘ i
101} J
i 10 | w 1‘ H |
10° t ' H 105 : . . H H H H

10° 10! 102 103 0 50 100 150 200 250 300
time [ms] time [ms]

Good performance 1n initial tests
o “remote”: cmslpc @ FNAL to Azure (VA),  <«ime» =56 ms

o “onprem”: run CMSSW on Azure VM,  «time> = 10 ms
(~2 ms on FPGA, rest 1s classifying and 1/O)



TRAVEL LATENCY?

O
MICHIGAN < NEW YORKMASSACGHU

Detroit CT. LR
, Ol
Chicago New York
O @)

PENNSYLVANIA

Speed of light NJ
=10 ms’ i, = DE

ILLINOIS :INDIA
O

Indian li ‘
ndianapolis e Washington
NIA
OURI
GINIA
KENTUCKY
Nashville NORTH
O
TENNESSEE o CAROLINA
~ Charlotte

With network switches? May be about right :)

3R



TESTING SONIC

10°

33

103}

102}

101t

10°

Logarithmic x-axis

— remote
— onprem

R

101 -
102}

103 |

10} W
10° -

— remote
— onprem

Linear x-axis

Quantization
effect?

1

10°

Good performance 1in initial tests
o “remote’’: cmslpc @ FNAL to Azure (VA),
o “onprem”: run CMSSW on Azure VM,

10! 102
time [ms]

103 0 50

(~2 ms on FPGA, rest is classifying and 1/0O)

100 150 200 250 300
time [ms]

time) = 56 ms
timey = 10 ms

Type Hardware Mean inference time Setup

CPU Xeon 2.6 GHz, 1 core 1.75 seconds CMSSW, TF v1.06
CPU i7 3.6 GHz, 1 core 500 ms standalone python, TF v1.10
CPU i7 3.6 GHz, 8 core 200 ms standalone python, TF v1.10




OTHER HARDWARE OPTIONS

34

10°

10% |e

o e,

time per image(s)
[}

102} -8 = = = =

®
o

Cocong

® o Jgzure resnet gpu
e e resnetgpu
e e resnet gpu train

e NVidia GTX 1080 Ti

“onprem FPGA”: 10 ms

®
______ W= = = = g m - —m—————--
& Py ®

Brainwave ResNet50 on GPU
Official ResNet50 in tensorflow

Super optimized ResNet50

1073 '
0 10

20 30 40 50 60 70
batch

80

Not so straightforward to compare against other hardware, the whole chain
matters: pipelined inputs, |O bandwidth (PCle), special instruction sets, etc.

General findings:

GPUs: O(~100 ms), for batch-1 input
To explore: Google TPUs, AWS/Xilinx FPGAs, Intel/Altera FPGAs



HLT/OFFLINE OUTLOOK 35

Exploring the use of FPGA co-processors (MS Brainwave) for ML acceleration
as an “off-the-shelf” computing paradigm for particle physics
¢ Deploying cloud accelerators as a service fits the particle physics computing
model in a non-disruptive way
* For large computing tasks (Resnet-50), there is a ~(4/10/100)x benefit
over CPU-only computations
e Could be used for neutrino experiments ~today!
e “Edge” compute option as an HLT solution?

Outlook and further studies

To explore: Google TPUs, AWS/Xilinx FPGAs, Intel/Altera FPGAs
Important to benchmark different platforms to understand our options/
projections.

Need to understand scaling (not too worried about this)

What's the costing model?

Relies on continued development of ML algorithms for difficult physics problems

(simulation/reconstruction)



36

Physics case: Event classification in NOvVA



AVAILABLE MODELS AND SERVICES ON BRAINWAVE 57

Pre trained
Featurizer ResNet50
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AVAILABLE MODELS AND SERVICES ON BRAINWAVE 58

Pre trained
ResNet50

Featurizer

N

L/
\ |/ T\
NSNS
N7

LT | _\;,‘
ﬁ' { mm) Classifier ®) Chihuahua

77 NN

NSNS\

r ™
Physics images:
Neutrino events—| .{Features)
Or Jet images
\_ J .
Frozen Retrain

New feature: fine-tune the weights in featurizer too! Will be included in final results
Other models became available recently: VGG etc



THE NOVA EXPERIMENT:

NuMI: Neutrinos at the Main
Injector

Long-baseline (anti-)neutrino
oscillation experiment

Two functionally identical
detectors, optimized for ve
identification

Primary goal:
measurement of neutrino
oscillations via vu—ve

Other goals include:

Searches for sterile neutrinos
Neutrino cross sections
Supernova neutrinos Cosmic ray
physics

39



EVENT TOPOLOGY

Plane of horizontal cells

3D reconstruction

40

Plane of vertical cells

TVt CIC!
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NOVA:NEUTRINO FLAVOR CLASSIFICATION

Training Setup
- training/testing:
500K/150K
- Pre-trained
ResNet-50 model
on image net.

5 labels:

- Muon neutrino

- Electron neutrino
- Tau neutrino

- Neutral Current
- Cosmic

1
o e 1
[ ]

- 10080

41

1
) oo 1
1

- Merged image scaled to resolution of
224*224 using Bilinear Interpolation from
TF, to be fed into ResNet50




EVENTS WITH PROBABILITY LARGER THAN 0.9

Electron Neutrino

11111

Muon Neutrino

Tau N_eutrino

11111

Color represents energy deposit

Cosmic
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Events identified with more that 0.9 probability by the ResNet-50 network
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Physics cases: jet substructure



JET SUBSTRUCTURE




True label

TRAINING STATUS

45

Generator level AKS8 jets: quark/gluon/W/Z/top, density map of the

pt of jet constituents.
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Outlook and next steps



TAKEAWAYS av

Computing challenges in big data: More complex detectors and
sophisticated algorithms, large datasets.

We follow the industry trend in exploring specialized hardware (co-
processers) as ML acceleration options.

Started with Microsoft brainwave, demonstrated FPGAs are a
promising option to accelerate neural network inference:

o Can achieve (at least) order of magnitude improvement over CPU

o Better fit for CMS event-level computing model (vs. GPUs which
require batching for efficiency)

0 Physics cases: Nova event classification& jet substructure using
ResNet50 on brainwave.

Proof of concept, more studies to follow



BACKUP

48



PICTURES 40

CM\S 1 Candidate qW event

g Dijet mass: 5.1 TeV
— \\ A r'
<\

Anti-kt R=0.8 jet
pr 2406GeV
1 0.66
¢ 251 Anti-kr R=0.8 jet
Msp  29.1GeV “pr 2298GeV
™ 0.50 " 017
¢ 063
Msp 81.6GeV
1 0.29
Anti-kt R=0.8j .
_Anti-kr R=0.8 jet Candidate WW event
T 618 GeV Dii - 1.3TeV
7 053 ijet mass: 1.3 Te
¢ 1.18
Msp 81.3GeV
T 0.29

~ S \ f

Candidate Z jet

Anti-kr R=0.8 jet ¥

pr 21TeV !
n -0.32 !
] 0.63 i

Mgp 96.6
/11 0.34

Anti-kr R=0.8 jet

“pr 569GeV
n 0.27
CMS E LHC, CERN ¢ 202
xperi 2 xperiment at X 2GeV
Data recorded: Sat 06t 22.00.05:32 2016 CEST Data recorded: Fri Aug 19 02:26:23 2016 CEST Msp 3032 Ge
Run/Event: 283820 / 450110972 Run/Event: 279024 / 602168401 1 :

Lumi section: 263 .
Lumi section: 376



FURTHER NEXT STEPS 50

Model customization

Whenever we talk about this — people are generally positive but always ask when we
can put our own networks on the FPGAs

Is it something we can work with you on? Not just CNNs, but Graph NNs, LSTMs,
etc...

On-prem HLT-like demonstration

An “edge” offering has been brought up a few times — this is something,
with necessary infrastructure, we're interested in pursuing if possible as a
demonstration of the trigger (on-prem, real-time) capabilities

Scaling up
We should try to demonstrate running on N (>>1) CPUs and M (>1) services
to understand how to scale services. This will give us an idea of cost scaling
as well.



JET IMAGES 51
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THE CMS SOFTWARE

CMSSW:
o Hosted on GitHub
o ~6 million lines of code

o Handles simulation, raw data processing, reconstruction, analysis

Event-based processing model:
© Load event data into memory
o Numerous modules process parts of event, output new products

Parallelism:
o Multiple events in flight — streams
o Multiple modules running simultaneously — threads
= Task-based multithreading using Intel Thread Building Blocks

WLCG: Worldwide LHC Computing Grid
o Network of computing clusters at labs, universities, etc.
o Mostly commodity hardware
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https://github.com/cms-sw/cmssw/blob/master/RecoParticleFlow/PFTracking/python/hgcalTrackCollection_cfi.py

SONIC IN CMSSW
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Services for Optimized Network Inference on Coprocessors

Demonstration in Microsoft Brainwave:
o Create “image” from jet constituents, process with ResNet50
= Much larger than custom HEP networks (so far)
o Send to Microsoft Brainwave FPGA using gRPC w/ TensorFlow (protobuf)
o FPGA processes one image at a time — no batching needed to be efficient
o Use External Work mechanism
= gRPC C++ API lacks a callback interface (currently)

>wait for gRPC return in lightweight std::thread

SonicCMS repository on GitHub


https://github.com/hls-fpga-machine-learning/SonicCMS/tree/kjp/1020_azureml_ew

MEMORY AND THREADS

memory (GB)
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Latency versus number of threads



COMPARISON TO GPU/CPU: UPDATE

time per image

Benchmark Nvidia GTX 1080, Intel i7 3.6 GHz
Pure inference time (load time is 5 min for .pb file), TF v1.10
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COMPARISON TO GPU/CPU

time per image
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Benchmark Nvidia GTX 1080, Intel i7 3.6 GHz
Pure inference time (load time is 5 min for .pb file), TF v1.10
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Intel i7 3.6 GHz (8 core, TF v1.10) ~ 180 ms
Intel i7 3.6 GHz (1 core, TF v1.10) ~ 500 ms
Intel i7 3.6 GHz (1 core, TFv1.06) ~ 1.2 s

Intel Xeon 2.6 GHz (1 core, TF v1.06) ~ 1.75 s
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NOVA DETECTORS

To 1 APD pixel

Highly segmented low Z tracking calorimeter. A
’ Iy 569 o oW £ TAcHIng Building
» Cells are filled wit liquid scintillator
»  wave shifting fiber readout block of
| 9 | NOVA
» 65% active by volume
» Detection with avalanche photo diodes.
» Alternating X/Y planar geometry: 3D reconstruction

=

typical P
charged ~»~
particle

path

4

Far Detector, on surface
14 kTons
896 readout planes
344,064 pixels
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ANOTHER EXAMPLE: CMS HGC 56
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Privacy issue: not the focus today but probably deserves a
plenary talk in some other conferences...



